71 research outputs found

    Tobacco, hypertension, and vascular disease: Risk factors for renal functional decline in an older population

    Get PDF
    Tobacco, hypertension, and vascular disease: Risk factors for renal functional decline in an older population.BackgroundA decline in renal function with age has been noted in some but not all individuals. The purpose of this study was to identify risk factors associated with a clinically significant increase in serum creatinine (of at least 0.3 mg/dL) in an older nondiabetic population.MethodsA retrospective case-control study was performed analyzing data obtained from 4142 nondiabetic participants of the Cardiovascular Health Study Cohort, all at least 65 years of age, who had two measurements of serum creatinine performed at least three years apart. Cases were identified as participants who developed an increase in serum creatinine of at least 0.3 mg/dL, with controls including participants who did not sustain such an increase.ResultsThere was an increase in the serum creatinine of at least 0.3 mg/dL in 2.8% of the population. In a multivariate “best-fit” model adjusted for gender, weight, black race, baseline serum creatinine, and age, the following factors were associated with an increase in serum creatinine: number of cigarettes smoked per day, systolic blood pressure, and maximum internal carotid artery intimal thickness.ConclusionsThese data suggest that three very preventable or treatable conditions—hypertension, smoking, and prevalent vascular disease, which are associated with large and small vessel disease—are highly associated with clinically important changes in renal function in an older population

    Renal insufficiency as a predictor of cardiovascular outcomes and mortality in elderly individuals

    Get PDF
    AbstractObjectivesThis study was designed to evaluate the relationship between elevated creatinine levels and cardiovascular events.BackgroundEnd-stage renal disease is associated with high cardiovascular morbidity and mortality. The association of mild to moderate renal insufficiency with cardiovascular outcomes remains unclear.MethodsWe analyzed data from the Cardiovascular Health Study, a prospective population-based study of subjects, aged >65 years, who had a serum creatinine measured at baseline (n = 5,808) and were followed for a median of 7.3 years. Proportional hazards models were used to examine the association of creatinine to all-cause mortality and incident cardiovascular mortality and morbidity. Renal insufficiency was defined as a creatinine level ≥1.5 mg/dl in men or ≥1.3 mg/dl in women.ResultsAn elevated creatinine level was present in 648 (11.2%) participants. Subjects with elevated creatinine had higher overall (76.7 vs. 29.5/1,000 years, p < 0.001) and cardiovascular (35.8 vs. 13.0/1,000 years, p < 0.001) mortality than those with normal creatinine levels. They were more likely to develop cardiovascular disease (54.0 vs. 31.8/1,000 years, p < 0.001), stroke (21.1 vs. 11.9/1,000 years, p < 0.001), congestive heart failure (38.7 vs. 17/1,000 years, p < 0.001), and symptomatic peripheral vascular disease (10.6 vs. 3.5/1,000 years, p < 0.001). After adjusting for cardiovascular risk factors and subclinical disease measures, elevated creatinine remained a significant predictor of all-cause and cardiovascular mortality, total cardiovascular disease (CVD), claudication, and congestive heart failure (CHF). A linear increase in risk was observed with increasing creatinine.ConclusionsElevated creatinine levels are common in older adults and are associated with increased risk of mortality, CVD, and CHF. The increased risk is apparent early in renal disease

    Elevated urinary CRELD2 is associated with endoplasmic reticulum stress-mediated kidney disease

    Get PDF
    ER stress has emerged as a signaling platform underlying the pathogenesis of various kidney diseases. Thus, there is an urgent need to develop ER stress biomarkers in the incipient stages of ER stress-mediated kidney disease, when a kidney biopsy is not yet clinically indicated, for early therapeutic intervention. Cysteine-rich with EGF-like domains 2 (CRELD2) is a newly identified protein that is induced and secreted under ER stress. For the first time to our knowledge, we demonstrate that CRELD2 can serve as a sensitive urinary biomarker for detecting ER stress in podocytes or renal tubular cells in murine models of podocyte ER stress-induced nephrotic syndrome and tunicamycin- or ischemia-reperfusion-induced acute kidney injury (AKI), respectively. Most importantly, urinary CRELD2 elevation occurs in patients with autosomal dominant tubulointerstitial kidney disease caused by UMOD mutations, a prototypical tubular ER stress disease. In addition, in pediatric patients undergoing cardiac surgery, detectable urine levels of CRELD2 within postoperative 6 hours strongly associate with severe AKI after surgery. In conclusion, our study has identified CRELD2 as a potentially novel urinary ER stress biomarker with potential utility in early diagnosis, risk stratification, treatment response monitoring, and directing of ER-targeted therapies in selected patient subgroups in the emerging era of precision nephrology

    Clinical characterization of a family with a mutation in the uromodulin (Tamm-Horsfall glycoprotein) gene

    Get PDF
    Clinical characterization of a family with a mutation in the uromodulin (Tamm-Horsfall glycoprotein) gene.BackgroundWe have recently identified a mutation in the uromodulin gene in a large family affected with hyperuricemia, gout, and renal failure. The purpose of this investigation is to provide a comprehensive characterization of the clinical findings of this syndrome in family members who had a mutation in the uromodulin gene.MethodsAn extended family suffering from hyperuricemia and gout was identified by a local practitioner. After consent was obtained, patients provided a directed clinical history and blood and urine specimens for chemical and genetic testing. All family members were tested for the presence of uromodulin gene mutations by direct DNA sequence analysis. The clinical and biochemical characteristics of family members carrying the affected mutation were then investigated.ResultsThirty-nine family members were found to have an exon 5 uromodulin gene mutation (g.1966 1922 del), and 29 unaffected family members were identified. The cardinal clinical features in individuals with the uromodulin mutation included hyperuricemia, decreased fractional excretion of uric acid, and chronic interstitial renal disease leading to end-stage renal disease (ESRD) in the fifth through seventh decade. Women did not always develop hyperuricemia or gout, but still developed progressive chronic renal failure.ConclusionMutation of the uromodulin gene resulted in hyperuricemia, reduced fractional excretion of uric acid, and renal failure. Genetic testing will be required to definitively identify individuals suffering from this condition. We are interested in studying other families that may suffer from this condition and would appreciate any such referrals

    Sickle cell trait is not independently associated with susceptibility to end-stage renal disease in African Americans

    Get PDF
    Conflicting reports exist as to whether sickle cell trait is a risk factor for the progression of nephropathy. In order to determine whether African Americans with sickle cell trait are at increased risk for kidney disease, we assessed the genetic association between sickle cell trait and end-stage renal disease (ESRD). Hemoglobin S, non-muscle myosin heavy chain 9 (MYH9), and apolipoprotein L1 (APOL1) risk variants were genotyped in 3258 unrelated African Americans: 1085 with non-diabetic ESRD, 996 with type 2 diabetes-associated ESRD, and 1177 controls. Since APOL1 is strongly associated with ESRD in African Americans, interactions between APOL1 and MYH9 risk variants and hemoglobin S were assessed using case-only and case-control centered two-way logistic regression interaction analyses. The sickle cell trait genotype frequencies were 8.7% in non-diabetic ESRD, 7.1% in type 2 diabetes-ESRD, and 7.2% in controls. There was no age-, gender-, and admixture-adjusted significance for sickle cell trait association with non-diabetic ESRD (odds ratio 1.16); type 2 diabetes-ESRD (odds ratio 1.01); or all-cause ESRD (combined non-diabetic and type 2 diabetic-ESRD patients compared to the controls; odds ratio 1.05) in dominant models. In addition, no evidence of APOL1 or MYH9 interactions with sickle cell trait was detected. Hence, sickle cell trait is not associated with diabetic or non-diabetic ESRD in a large sample of African Americans

    An intermediate-effect size variant in UMOD confers risk for chronic kidney disease

    Get PDF
    The kidney-specific gene UMOD encodes for uromodulin, the most abundant protein excreted in normal urine. Rare large-effect variants in UMOD cause autosomal dominant tubulointerstitial kidney disease (ADTKD), while common low-impact variants strongly associate with kidney function and the risk of chronic kidney disease (CKD) in the general population. It is unknown whether intermediate-effect variants in UMOD contribute to CKD. Here, candidate intermediate-effect UMOD variants were identified using large-population and ADTKD cohorts. Biological and phenotypical effects were investigated using cell models, in silico simulations, patient samples, and international databases and biobanks. Eight UMOD missense variants reported in ADTKD are present in the Genome Aggregation Database (gnomAD), with minor allele frequency (MAF) ranging from 10(−5) to 10(−3). Among them, the missense variant p.Thr62Pro is detected in ∼1/1,000 individuals of European ancestry, shows incomplete penetrance but a high genetic load in familial clusters of CKD, and is associated with kidney failure in the 100,000 Genomes Project (odds ratio [OR] = 3.99 [1.84 to 8.98]) and the UK Biobank (OR = 4.12 [1.32 to 12.85). Compared with canonical ADTKD mutations, the p.Thr62Pro carriers displayed reduced disease severity, with slower progression of CKD and an intermediate reduction of urinary uromodulin levels, in line with an intermediate trafficking defect in vitro and modest induction of endoplasmic reticulum (ER) stress. Identification of an intermediate-effect UMOD variant completes the spectrum of UMOD-associated kidney diseases and provides insights into the mechanisms of ADTKD and the genetic architecture of CKD

    Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-Dominant Tubulo-Interstitial and Glomerulocystic Kidney Disease with Anemia

    Get PDF
    Autosomal-dominant tubulo-interstitial kidney disease (ADTKD) encompasses a group of disorders characterized by renal tubular and interstitial abnormalities, leading to slow progressive loss of kidney function requiring dialysis and kidney transplantation. Mutations in UMOD, MUC1, and REN are responsible for many, but not all, cases of ADTKD. We report on two families with ADTKD and congenital anemia accompanied by either intrauterine growth retardation or neutropenia. Ultrasound and kidney biopsy revealed small dysplastic kidneys with cysts and tubular atrophy with secondary glomerular sclerosis, respectively. Exclusion of known ADTKD genes coupled with linkage analysis, whole-exome sequencing, and targeted re-sequencing identified heterozygous missense variants in SEC61A1—c.553A>G (p.Thr185Ala) and c.200T>G (p.Val67Gly)—both affecting functionally important and conserved residues in SEC61. Both transiently expressed SEC6A1A variants are delocalized to the Golgi, a finding confirmed in a renal biopsy from an affected individual. Suppression or CRISPR-mediated deletions of sec61al2 in zebrafish embryos induced convolution defects of the pronephric tubules but not the pronephric ducts, consistent with the tubular atrophy observed in the affected individuals. Human mRNA encoding either of the two pathogenic alleles failed to rescue this phenotype as opposed to a complete rescue by human wild-type mRNA. Taken together, these findings provide a mechanism by which mutations in SEC61A1 lead to an autosomal-dominant syndromic form of progressive chronic kidney disease. We highlight protein translocation defects across the endoplasmic reticulum membrane, the principal role of the SEC61 complex, as a contributory pathogenic mechanism for ADTKD

    Mutations causing medullary cystic kidney disease type 1 (MCKD1) lie in a large VNTR in MUC1 missed by massively parallel sequencing

    Get PDF
    While genetic lesions responsible for some Mendelian disorders can be rapidly discovered through massively parallel sequencing (MPS) of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple Mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing, and de novo assembly, we found that each of six MCKD1 families harbors an equivalent, but apparently independently arising, mutation in sequence dramatically underrepresented in MPS data: the insertion of a single C in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (~1.5-5 kb), GC-rich (>80%), coding VNTR in the mucin 1 gene. The results provide a cautionary tale about the challenges in identifying genes responsible for Mendelian, let alone more complex, disorders through MPS

    Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing

    Get PDF
    Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (~1.5–5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.National Institutes of Health (U.S.) (Intramural Research Program)National Human Genome Research Institute (U.S.)Charles University (program UNCE 204011)Charles University (program PRVOUK-P24/LF1/3)Czech Republic. Ministry of Education, Youth, and Sports (grant NT13116-4/2012)Czech Republic. Ministry of Health (grant NT13116-4/2012)Czech Republic. Ministry of Health (grant LH12015)National Institutes of Health (U.S.) (Harvard Digestive Diseases Center, grant DK34854
    corecore